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A SIMPLE UNCONSTRAINED DUAL CONVEX PROGRAMMING METHOD FOR
THE COMPUTATION OF DISCRETE MAXIMUM ENTROPY DISTRIBUTIONS

by

P. Brockett and K. Paick

ABSTRACT

~
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—We formulatesithe generalized constrained maximum entropy problem
often used in a decision making context as an extended dual convex pro-
¢ Ther /-"—.‘J"v‘hf‘{-;&
gramming problem. We then present the dual problégzg’lﬁ'fﬁis dual
setting the primal Lagrange multipliers are precisely the dual var-
jables, and are easily calculated directly by virtue of the simple
An example involving the selection of

. . r}?i gulhors
is presented as an illustration.

structure of the dual probliem,

best equipment for an oil spill
*}.fn’

contrast our solution with those given by previous authors.
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The notion of information is strongly connected to the amount of

uncertainty. In many problems encountered in operations research practice,
it is useful to estimate the discrete probability distribution for a
random phenonmenon under uncertainty. The general maximum entropy
principle is a véry useful method for incorporation the uncertainty

of some situation into a probability distribution where one is trying

to make the most out of some limited knowledge and resources.

The maximum entropy estimation, a special case of minimum
discrimination information, has been used in numerous fields (e.g.
Brockett et al [1984], Thomas [1979].

In a recent paper, Freund and Saxena [1984] gave an algorithm to
compute maximum entropy probability estimates. In this paper we present
a much more general, and much easier computational method for obtaining
these estimates. Additionally, our method easily extends to the
computation of minimum discrimination information estimates as well.
The bulk of this paper centers on the development of a dual convex
programming formulation for maximum entropy estimation, and shows how
to view maximum entropy estimation from this dual convex programming
point of view. We then point out the analytical properties of the
estimates which follow directly from the form of this duality. Section
| contains the mathematical formulation of maximum entropy. in section
i1 we present the unconstrained dual formulation for Lagrange multipliers

due to Charnes and Cooper [1975) and Charnes, Cooper and Seiford [1978].

Section 11| contains an application of the unconstrained dual convex




programming method to an oil spill equipment selection problem considered
in Thomas [1979], and also in Freund and Saxena [1984]. The algorithm
we present is more general and easier computationally than that given
in Freund and Saxena (1984].
I. MAXIMUM ENTROPY
Mathematically the problem of maximum entropy estimation is to
determine that density function p which is maximally uncertain, and

which satisfies certain given constraints, e.g.

max H(p)= - / p(x)In(p(x)]A(dx)
s.t. fho(x)p(x)k(dx)=60-1
J/h

1 (X)p{x) X (dx)=0,

fhk(x)p(x))\(dx)sek
Here A is some dominating measure for p (usually Lebesgue measure in

the continuous case, or counting measure in the discrete case), 9 ,0

REEERL

are the given constant values for a known set of moment functions hl""’
hk and ho(x)-l. Frequently in hypothesis testing or estimation of an
inferential distribution by maximum entropy estimation, one has information
about the possible candidate distribution in the form of inequality
constraints in addition to equality constraints. The form of range

constraints of probability distribution can be easily transformed to

inequality constraints. In this case we can add following constraints

to the original constraints;




A
<D

k+1

Fhy g ()P (x)A(dx) =

Iy ()P (X)X ()

tAa

ek+n'

The explicit calculation of maximum entropy density subject to the
given constraints is carried out by Lagrange multipliers. Since
solving the maximum entropy estimate entails solving the highly
non-1inear constraint equation, it has been difficult to solve the
Lagrange multiplier system explicitly in order to obtain a closed form
solution expressed directly in terms of the known expected values ei
(Leblanc and Reisher [1981], Brockett et al [1980]). For this reason
certain numerical solutions were derived by approximation (first order
approximation by Guiasu [1980], second order approximation by Leblanc
and Riesher [1981]). Furthermore, the solutions in Thomas [1980] and
Freund and Saxena [1984] turn out to be different from the optimal so-
lutions. We will discuss these examples in section |1|l.

11. UNCONSTRAINED DUAL PROGRAMMING APPROACH TO ESTIMATION,

In the first part of this section, we shall present maximum
entropy estimation in the discrete case via dual convex programming
with only non-positivity constraints. These results are special cases
of the results given in Charnes and Cooper(1975] and Charnes, Cooper,
and Seiford(1978].

Theorem 2.1

The following linear constrained maximum entropy primal problem

s - .
A SR IASASAI AN




sup v(§) = -6%1ns

s.t. stal ab't (P)
GtAz < bZt
'Q: 0
has a dual problem
inf £(z)= exp(A]zl+A222)-b]tz’-bth2
s.t. z?gp- ©)
There are three mutually exclusive and collectively exhaustive duality

states;

"t §%A%2<%t 550} = ¢ and £(z) is unbounded below.

(1) az{s:6%A'=b

(2) Every feasible solution of (P) has a zero component for all Sci#d
and ¢ (z2) with non-positive z2 has only an infimum. In this case inff(z)=
maxv(s)= min Eb(z) where ED(z) contains only those terms of £(z) for which
5i>° in some {eA.

(3) There exists ScA with 6>0 and £(z) has a minimum at z*. in this case
following relationships obtain between the optimal primal and dual
variables

a) infE(z*)= supv(6*)= maxv(8*) = min £(z*)

b) v(§) has a unique maximum at §*>0

*t 222*]

*
c) § " = exp[A‘z‘ + A

Note that state (3) is the usual state considered in applied problems.

Proof (adapted from Charnes, Cooper and Seiford [1978])

The constraints in primal problem may be written as




GtAl - b‘t
sta2 Yt - bZt
§, y>0
Here Al is m, xn, and A2 is mzxnz. By the duality inequality,
- ; Gilnéijui (exp(xi)-éixi)- .Z \NZ
i iEA ieB

with (2.1), yifp, ieB. Also A-{I,...,m]}, and B-{m1+l,...,m2}. i.e.

-5%1n6 < min exp(x)-(étx +Yty)5 K(8,v, x,y) with &,y >0, y<0.

To decouple, we obtain Gtx + Yty = bltzl + bthz a

(68 yOrx = ( 65,v8) ral A27r2!
[y] [0 '][22]
where we have set
x| = A' A2 zI
L6
thus we obtain the dual problem
!

nd

inf Z(2) exp(A]z + Azzz) - bltzI - bthz

s.t. z2<0.

Because state (3) is the most usual and encountered state, we shal!

present the proof for state (3) only. The proof of (1) and (2) may be

found in Charnes, Cooper and Seiford [1978].

Let K(S,vy,x,y)= exp(x) - §tx - Yty for §,v>0, xeR and define

g(8)= inf K(8,y, x,y)= -6%1né. Because of the constraint
('<5t,Yt‘)[A1 Aj- (b't, 52%) and by setting{x| =]A

Y 0

1

0 |

(2.1)

2

A
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we have g(8) = -5t 1n(8) < exp(x) - 6tx - yty

= exp| Alz! 4 AZZZ] - 8% A1z] + Azzz]- Ytz2
- expl a'z! v 23] - plgl - b2,
which holds for all z‘,z%i 0, 6§ ={4&: 6tA] = b1t, 6tA2 < bZt, § > 0},
t.2 t 2t . *
and vy ={y : §'A° + y" =b"" , y> 0}. The equality holds for § = exp

(A'z' + a2%, Q.E.D.

If the requisites for state determination are not obvious, the
state may be charaterized by means of the following linear programming
problem:

max U

s.t. uwt - 5t <0

GtA1 - b1t
6tAZ < b2t
s >0

where w' = (1,1,...,1). State (1) corresponds to infeasibility, state

g

(2) corresponds to uh = 0 and state (3) corresponds to u*> 0. It is
obvious that there is no linear independehce reqbirement, and all
possible behaviors for the system A are considered.

This result is very attractive since the dual problem (D) is an
convex programming problem involving only exponential and linear terms
with non-positivity constraint for zz. Moreover, the desired Lagrangian

multipliers for the maximum entropy estimate (P) are precisely the dual

variables to (D), and (D) is easily solved numerically because of the

simply constrained nature of the problem (even unconstrained in the

-6~
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equality constrained case of the primal). Any of a number of readily
available non-linear programming codes can be used to solve the dual
formulation. Moreover, since we explicitly know the parametric form
of the optimizing density in terms of the unknown Lagrange multipliers,
and this form is unique and continuous in the unknown paramenters, the
procedure we employ in obtaining the Lagrange parameters via the dual
convex programming problem and then substituting into the parametric
form is stable numerically.

An alternative structure for a dual problem is a single one
parameter sequence of equality form. In order to make K(S,y, x,y) more
symmetric in & and v, and to remove the restriction of y<0, we adopt
the same procedure we emplioyed before. We can change (P) into (P') w.l.o.g..

(P*) max s%1né - efiny

. 1
s.t. otA] = b t

6tA2 . Yt - bZt
S, Y>0 where £>0.

Let define K(§,Y,x,y)= exp(x) + cexp(y/c) = §tx - Yty with £>0.
By the Charnes-Cooper duality theorem [1975], the following inequality
holds.

-6%1n6 - Ytlny < K(S,Y,x,y).
Because of the given constraint

(Gt, Yt) [A‘ Az' = (b]t, bZt), and by setting

0 |
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we have
t t t
=67 1nd§ < exp(x) = §'x = vy + eexp(y/e).

Thereby a new unconstrained form of dual problem (D') for (P') is

obtained.

(D') inf £(z) = exp(A]z] + Azzz) + eexp(zz/e) - b'tzl - bthz

The duality theory of (P') and (D') is exactly that of the equality
case presented in Brockett, Charnes and Cooper [1980]. Charnes, Cooper
and Tyssedal [1983] proved that (P') is equivalent to (P) when € approaches
zero, and as a result (D') gives the solution to (D).
t11. NUMERICAL EXAMPLES.
Two examples of maximum entropy estimates are presented. These
are based on the oil spill problem in Thomas [1979]. The following
four alternatives exemplify the decision problem for a particular
habor area (see Thomas [1979] for the details)
a,: contract all clean-up activities

1

aZ: procure equipment A for open area spills and contract for
pierside clean-up
33: contract for open area spills and procure equipment set B for
pierside clean-yp
a,: procure equipment set C for all spills.
Once the maximum entropy distribdtion is derived, the expected annual
cost of each alternative j, E(Aj), for both problems can be easily-

calculated as E( Aj ) = ZAcijpi where ACij is the annual cost of jth

!
alternative for ith state, We will provide the problem and solution for

maximum entropy estimation part only,

The problem presented in Thomas [1979] reduces to the following:
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i .25 < P, < .60
P; <Py i=3,...,12 .25 <p, < .50
Py*Py 2 Py*Pc*Pg 10 < py < .40
P5 < Pg 0<p. <£.30 ,i=4,11,12
P1o < P7 0<p, <.50 i=5,...,9
Pg < Pg 0 <Py <20

Pi2 £ P11+ Pg

Po2 Pig * Py + P2

Freund and Saxena simplified the above problem by choosing onll a subset
of the given constraints, namely the interval constraints, and non-
negativity constraints for the pi's and of course the normalizing
constraint. Instead solving the simplified problem of Freund and

Saxena by the technical algorithm they present, we note that we can
get the optimal solution by intuition in this case. Due to the maximum
entropy principle, p would be a uniform distribution if there were no
constraints other than the usual normalizing and non-negativity
constraints. Pys Pys and p3 must, however, have the value of their
respective'lower bounds since these lower bound values are greater than
1/12 which is the value in uniform distribution giving maximum entropy.
Given these lower bounds, the rest of the probabilities P:s ish,...,12

would strive to uniformaly allocate the residual probability 1-pl-p2-p3. -

-9-
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Thus the intuitive optimal solution shouid belp1=p2=.25, p3=.10 and
pi=.4/9(i=“.---,12). In fact, exactly the same optimal solution is obtained
by solving the dual problem according to the technique given in this paper.
The maximum entropy value is 2.1688. Freund and Saxena did not provide

the probability distribution. The expected annual cost, however, in their
paper implies their algorithm did not find the optimal solution. Their

expected annual costs are (18.65, 17.33, 15.80, 16.33). These are

different from our value (18.761, 17.428, 15.888, 16.555) which were

v
—TTr

obtained using the optimal solution to the dual of the constrained

Ii' maximum entropy problem.

Using the duality based algorithm presented in this paper, we are

able to go even further than Freund and Saxena and solve the original

problem in Thomas. We obtain the optimal solution

% % * %* * %
py= .25 Py = 25§ Py =,10 ph-.0h72 p5=.0472 Pg =, 0472
7 % - % % k3 *
p7= .08183 p8= L0472 p9=.0472 p10= L0274 P .0274 p]2=.027h.

This has a maximum entropy value of H(p )= 2.14425549. The solution in

Thomas is different from our results even though it has only a slightly

%
smaller H(p ) value. The resulting ''optimal' probabilities differ quite

3 .

a bit from our solution in some cases ( p;- .044 instead of .0472,
pg- .051 instead .0472).

In the dual formulation of the maximum entropy problem, as we
proved, the computation is easily accomplished using any of a number

of existing non-linear programming codes, and it is guaranteed to obtain

-10-
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the optimal solution because of the special known parametric form of the
primal probiem, and our dual programming technique for obtaining the
parameters. It can be applied in both (D) and (D'). We find that the
optimal solution in (D') is very close to the optimal solution in (D)

as expected, and so we might use (D') instead of (D) in certain cases

if we prefer unconstrained optimization. Also we can extend the re-
sult of the Charnes-Cooper duality theory to continuous maximum entropy
cases in the same manner (Charnes et al [1978]). Additionally, all

of the duality results (and consequent computational savings) presented
in this note on maximum entropy estimation carry over directly to minimum
discriminatioq information (MDI) estimaiton with non-uniform ‘‘goal

densities''. See Charnes, Cooper and Seiford [1978] and Brockett, Charnes

and Cooper [(1980] for details.
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